Propersea Structure-based predictions at the Physical Sciences Data-science Service

What does Propersea do?

Propersea is an online structure-based prediction engine for physicochemical properties and IUPAC naming.

OCCc1ccccc1^[?]

C₈H₁₀O Molar Mass: 122.2 g·mol⁻¹

IUPAC Name [?]: 2-phenylethanol

Propersea allows the user to:

• Predict physicochemical properties, including:

Melting point		Value	95% Credik	ole Interval ^[?]	Reliability [[]
	Melting Point ^[?]	-3.13 °C	-24.2	18.0	High
Boiling point	Boiling Point [?]	220.0 °C	211.0	226.0	High
Density	Flash Point [?]	97.3 °C	89.0	105.0	High
logP	Density [?]	1.04 g·cm ⁻³	1.02	1.06	High
	Solubility (@ 25 °C) [?] Viscosity (@ 25 °C) [?]	29.0 g·L ⁻¹ 7.5 mPa·s	12.0 5.0	59.0	High Medium
Solubility	Surface Tension (@ 25 °C) [?]	39.0 dynes•cm ⁻¹	38.0	40.0	Medium
Viscosity		1.5	1.3	1.8	High
Polarizability	logK _{OA} [?]	6.0	5.5	6.4	Medium
Molar refractivity	Refractive Index [?]	1.54	1.49	1.6	High
Polar surface area	Molar Refractivity [⁷]	37.2 cm ³ ·mol ⁻¹	-	-	-
	Polarizability [?]	14.8 Å ³	-	-	-
pK _a	Polar Surface Area [?]	20.2 Å ²	-	-	-
H-bond acc/don	Dipole Moment [?]	1.92 D	-	-	-
·	pK _a (atom 10) [⁷]	14.9	-	-	-
Ionization energy	H-bond Acceptors [?]	1.0	-	-	-
	H-bond Donors [?]	1.0	-	-	-
Predict the IUPAC name from a	Rotatable Bonds ^[?]	2.0	-	-	-
redict the IUPAC name from a	Heat of Formation [?]	-131.0 kJ·mol ⁻¹	-	-	-

Ionization Energy [?]

structure, SMILES or InChI

Example o	of results	from	Propersea
Example e	1100100		ropersea

9.54 EV

Access Propersea via the Physical Sciences Data-science Service at <u>www.psds.ac.uk</u> email: <u>info@psds.ac.uk</u>

How does Propersea work?

Predictions are made based on chemical structures entered by:

- **Structure search** via the ChemDoodle[®] structure drawing interface
- Typing or pasting a SMILES string or InChI (including InChI=)

The properties are predicted through a variety of algorithms, including:

- RDKit algorithms
- Semi-empirical quantum methods
- Fragment/ atom contribution calculations
- Bayesian Additive Regression Trees
- Transformer neural networks

The predicted value is returned in the results interface. For those properties predicted using the Bayesian algorithms it also returns an interval for the 95% confidence, along with a measure of how well the molecule compares to molecules contained in the training set.

If a property prediction is deemed non-sensical due to the predicted phase, the property may be omitted from results.

Limitations of Propersea

Propersea performs best for organic compounds and performance on inorganics, orgometallics and inorganic-organic mixtures is known to be lower.

Reliability metrics for these compounds would show as 'Low' or 'Very Low'.

How do I access Propersea?

Propersea is provided to the UK academic community via the **PSDS at** <u>www.psds.ac.uk</u>. The Physical Sciences Data-science Service is funded by the EPSRC.

Access is authenticated by UK academic IP address via **<u>www.psds.ac.uk</u>**. If working off-campus, a PSDS username and password will be issued.

Access Propersea via the

Physical Sciences Data-science Service

at <u>www.psds.ac.uk</u>

email: info@psds.ac.uk